

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023

Question Paper Log Number P72906A

Publications Code WST03_01_MS_2301

All the material in this publication is copyright

© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
- e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:

 If all but one attempt is crossed out, mark the attempt which is NOT crossed out.

 If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question		Scheme		Marks			
1 (a)(i)	Meth		Method 2	17101110			
	$[\overline{y} =$	$]\frac{847}{100}[=8.47]$	847+100×1000 [=100847]	M1			
	So \bar{x}	$\overline{t} = 1000 + \frac{847}{100} = 1008.47 *$	$\overline{x} = \frac{847 + 1000 \times 100}{100} = 1008.47$ *	A1*			
(ii)	$\left[s_{x}^{2}\right]$	$= s_y^2 = \left] \frac{13510.09 - 100 \times "8.47"^2}{99} \right]$	$\left[s_x^2\right] = \frac{101707510.1 - \frac{"100847"^2}{100}}{99}$	M1			
			A1				
(b)	$H_0: \mu_x = 1010$ $H_1: \mu_x \neq 1010$						
	77	1010 7 1010		(1)			
(c)	$\frac{X-}{"8"}$	$\frac{1010}{\sqrt{100}} = -1.9$ oe $\frac{\overline{X} - 1010}{"8" / \sqrt{100}} =$	1.96 oe	M1 B1			
	$\overline{X} =$	1008.432 $\bar{X} = 1011.568$ awrt	t 1008 and 1012(or 1011)	A1			
		$\bar{X} = 1008.432$ " $\bar{X} \ge 1011.568$ "		A1ft			
				(4)			
(d)		3.47 is not in the critical region		M1 A1ft			
	The machine does not need to be stopped /reset						
(e)	It is 1	reasonable since the sample size is	(reasonably) large	B1 (2)			
	It is reasonable since the sample size is (reasonably) large B1 (1)						
			Notes	Total 12			
(a)(i)	M1	For 8.47 or $\frac{847}{100}$ or $847 + 100 \times 1$	000 or $847 = \sum x - 100 \times 1000$ or 100847 seen				
	A1*	cso correct solution including $\overline{x} =$ y and must not be just $x \in E(X)$, μ_x	and=1008.47 allow alt notation for \overline{x} but must ref	er to x not			
(ii)	M1	For a correct expression ft their 1008	47 Allow for answer of 1064				
	A1	Cao do not ISW Allow 64.00					
(b)	B1	Both hypotheses correct. Must be in t	terms of μ . (Allow $H_0: \mu_y = 10 \ H_1: \mu_y \neq 10$)				
		Mark (c) and (d) together					
(c)	M1	For ± standardisation with 1010 and SC condone use of 1008.47 for 1010	their sd. Allow equivalent eg $1010 \pm n \times "8" / \sqrt{100}$ or for \overline{X}				
	B1	For $c_{Y} = \pm 1.96$ or better seen (Calculator gives 1.95996) Condone 1.6449 or better if they have					
	A1	1 For both limits 1008 or better and 1012 or better seen. (condone 1011 from correct working)					
	A1	letters(condone μ) Allow other notation	ir figures (not z value). Allow use of $<$ and $>$ also allo tion eg [1012, ∞], (∞ , 1008] allow [1012, ∞], [∞ , 1	[800			
(d)	ft their CR if the final A mark in part (c) is awarded. For a correct comment compatible with their CR. Must refer to 1008.47 (allow mean of x) is in or out of their CR Allow writing in the form "1008.432" < 1008.47 < "1011.568" etc but if in middle it must have both ends. If no clear CR it is M0A0						
	dep on M1 awarded. Correct conclusion consistent with comparing 1008.47 with their CR(allow interval/ range etc). If it is in the CR they must say it needs to be reset/stopped. If it is not in the CR it must say it does not need to be stopped/reset. (allow equivalent wording)						

	SC	If the CR in (c) is of the form "1008.432" $< \bar{X} <$ "1011.568" oe (not z values) then award M0A1 for concluding the machine does not need to be stopped/reset.
(e)	B 1	Any suitable comment about the sample being large eg n is large

Question			5	Scheme							Marks
Question	Athl	ete	A	В	С	D	E	F	G	Н	1/10/110
2 (a)		k SBT	4	2	1	3	5	6	8	7	M1
2 (a)	FP	N SD 1	1	2	3	4	5	6	7	8	141 1
		=9+0+4+1	1 0 1 0 1		_	4		U	/	0	N/1
					10]						M1
	$r_s = 1$	-\frac{6("16")}{8(63)}	= 0.8095	5						awrt 0.81	dM1 A1
											(4)
(b)	$H_0: \rho = 0, H_1: \rho > 0$										B1
	Critic	al Value $r_s = 0$.	.8333 oı	\cdot CR: r_s	$\geqslant 0.83$	33					B1
		ot reject H ₀ or n			does not	lie in th	e critica	l region	or there	is no	M1
		nce of a positive			uualatiar	h otrre		ala bast	time one	1 finiahina	
		is no evidence		sitive coi	rrelatioi	i betwee	n seasoi	1's Dest	time and	1 Ilnisning	A1ft
	positi	on for these ath	netes								(4)
		0.225175									` ` `
(c)	$r = \frac{0.225175}{\sqrt{0.1286875 \times 0.55275}}$									M1	
	= 0.84428 awrt 0.844									A1	
	— 0.0тт20 awit							(2)			
(d)	Critic	al Value $r = 0$.	7887 or	CR: r	≥ 0.788	37					M1
()	so the	re is evidence o	of a posi	tive cor	relation	between	season	's best t	ime and	finishing	4.1.0
	so there is evidence of a positive correlation between season's best time and finishing time for these athletes								A1 ft		
											(2)
()	N/1	attament to monte	gaagama1	haat time	Note		nat) Ma	rr ha iman	liad by S	7 12 16	Total 12
(a)	M1	attempt to rank seasonal best time (at least four correct), May be implied by $\sum d^2 = 16$									
	M1 Attempt to find the difference between each of the ranks (at least 3 correct) a					nd evaluatın	$g \sum d^2$				
		May be implied by awrt 0.81 NB if no ranks for SBT it is M0									
	dM1	dM1 dependent on 1 st M1. Using $1 - \frac{6\sum d^2}{8(63)}$ with their $\sum d^2$									
	A1	$\frac{17}{21}$ or awrt 0.8	81(0)								
		for reverse rankings									
	SC May score M1M1dM1A0 order 5 7 8 6 4 3 1 2 $\sum d^2 = 158$										
<i>a</i> >	both hypotheses correct. Must be in terms of α (allow something that looks like rho eg n)							e rho eg p).	Must be		
(b)	B 1	attached to H_0 and H_1									
	B1	critical value of		Sign sl	hould ma	tch there	H_1 or r_s				
		correct statemen	nt compa					text need	led but do	not allow	
	M1										r CV > 1
	M1 contradicting non contextual comments. If no CV or test statistic given or the test value of then it is M0						•				
	A1ft correct conclusion in context for their value of r_s from (a) and their stated CV. Conclusion						Conclusion	must refer			
to positive correlation, seasonal best or time				ime and	position.						
	SC For use of two-tailed test: May score B0B1M1A0 CV allow 0.881)										
(a)				CV allov	v U.881	.)					
(c)	M1 A1	awrt 0.844	useu								
(1)	M1	Critical value of	f 0 7887	Allow 0	8343 if h	vnothese	s are two	tailed in	(b)		
(d)			/ ()()/	, x110/00 U.(11 11	**************************************					

M1 must be awarded. A correct conclusion for their value of r from (c) Conclusion must refer to **A1ft positive correlation**, **seasonal best** or **time** and **finishing time**. Do not allow contradicting comments. if the |test value| or |CV| > 1 then it is M0

Question			Scheme		Marks		
	86×3		14×300		N/1		
3 (a)	120	$\frac{}{}$ or $-$	1200		M1		
		nd 278.5			A1		
					(2)		
(b)	H ₀ : Making a claim and age are independent (not associated)						
(b)	H ₁ : Making a claim and age are not independent (associated)						
		Observed	Expected	$\frac{(O-E)^2}{E}$			
		14	"21.5"	$\frac{(O-E)^2}{E}$ $\frac{(14-"21.5")^2}{"21.5"} = 2.6162$	M1		
		286	"278.5"	$\frac{(286 - "278.5")^2}{"278.5"} = 0.20197$			
	$\sum \frac{(O-E)^2}{E} = 7.123 + "2.616" + "0.2019"$						
		9.941		awrt 9.94	1 A1		
	$\nu = (2$	-1)(3-1) = 2			B1		
	$\chi_2^2(0.01) = 9.210 \implies CR: X^2 \geqslant 9.21[0]$						
	[in the CR/significant/Reject H ₀] There is sufficient evidence to suggest that making a claim is not independent of age .						
			N	Notes	Total 9		
(a)	M1	A correct method	od for finding one expe	ected value. Implied by one correct value.			
	A1		for both 21.5 and 278.				
(b)	B1	For both hypotheses correct. Must mention claim and age at least once. Use of "relationship" or "correlation" or "connection" is B0					
	M1			attributions to the χ^2 value or awrt 2.62 or awrt 0. May be implied by awrt 9.94	202 Allow		
	M1		vo values to 7.123 (may values. Do not ISW)	y be implied by a full χ^2 calculation, with at least	st 3 correct		
	A1	awrt 9.94					
	B1						
	B1ft	9.21[0] or better ft their Degrees of freedom common ones $v = 3$ is 11.345					
	dA1ft Independent of hypotheses but dependent on both M marks being awarded. We will ft to statistic and CV only. A correct contextual conclusion compatible with their values, whi words claim and age. eg if they have 11.345 and 9.94 they should say it is independent/associated. Do not allow contradicting statements.						
Full calcul	lations f						
(24-1)	$(4.33)^2$	(176-185.67)	$(48-50.17)^2$	$\frac{(652 - 649.83)^2}{649.83} + \frac{(14 - "21.5")^2}{21.5} + \frac{(286 - "278)^2}{278.5}$.5") ²		
ug —	22	105.67		(40.02			

or awrt 6.52 + awrt 0.5 + awrt 0.09 + awrt 0.01 + awrt 2.62 + 0.20

or
$$\frac{24^2}{14.33} + \frac{176^2}{185.67} + \frac{48^2}{50.17} + \frac{652^2}{649.83} + \frac{14^2}{"21.50"} + \frac{286^2}{"278.5"} - 1200$$

or awrt 40.19 + awrt 166.83 + awrt 45.92 + awrt 654.17 + awrt 9.116 + awrt 293.702 - 1200

Quest	ion	Scheme	Marks				
4 (a	a)	$H_0: B(4, 0.5)$ is a suitable model	D.1				
		$H_1: B(4, 0.5)$ is not a suitable model	B1				
		Expected frequencies 12.5, 50, 75, 50, 12.5	M1 A1				
		$-(O-E)^2 (15-"12.5")^2 (10-"12.5")^2$					
		$\sum \frac{(O-E)^2}{E} = \frac{(15 - "12.5")^2}{"12.5"} + \dots + \frac{(10 - "12.5")^2}{"12.5"}$	3.61				
			M1				
		or $\sum \frac{O^2}{E} - N = \frac{15^2}{"12.5"} + \dots + \frac{10^2}{"12.5"} - 200$					
ļ		= 10.84 (or 10.8)	A1				
ı		$\nu = 4$	B1				
		$\chi_4^2(0.05) = 9.488 \Rightarrow CR \geqslant 9.488$					
		Sufficient evidence to say that the research students claim is not supported	A1ft				
			(8)				
(b))	$[0 \times 15 +]1 \times 68 + 2 \times 69 + 3 \times 38 + 4 \times 10[=360]$	M1				
		$\frac{360}{200\times4} = 0.45$ *	A1*				
		200×4					
(=)		H . Din	(2)				
(c)		H ₀ : Binomial is a suitable model	B1				
		H ₁ :Binomial is not a suitable model					
		v=3	B1				
		$\chi_3^2(0.05) = 7.815 \implies CR \geqslant 7.815$	B1ft				
		No giomiticant avidance to gave that the binamial is not a more model on a del	1 1) 1 12				
		No significant evidence to say that the binomial is not a reasonable model	B1ft				
		No significant evidence to say that the binomial is not a reasonable model Notes	(4) Total 14				
(a)	B1		(4)				
(a)	B1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial,	(4)				
(a)		Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4)	(4)				
(a)	B1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied.	(4) Total 14				
(a)	B1 M1 A1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if need)	(4) Total 14				
(a)	B1 M1 A1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if need)	(4) Total 14				
(a)	B1 M1 A1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$	(4) Total 14				
(a)	B1 M1 A1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if need)	(4) Total 14				
(a)	B1 M1 A1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488	(4) Total 14				
(a)	B1 M1 A1 M1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815	(4) Total 14 ded)				
(a)	B1 M1 A1 M1 B1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. ft their CV are	ded)				
(a)	B1 M1 A1 M1 B1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. If their CV ar statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (ded) ded) detail 14				
(a)	M1 A1 A1 B1 B1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. If their CV ar statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the	ded) ded) det heir test Allow in n must say				
	M1 A1 B1 B1 A1ft	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. If their CV ar statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial). A correct method for finding the total number of girls. At least 3 non zero terms correct.	ded) ded) det heir test Allow in n must say				
(a)	M1 A1 B1 A1 B1 A1ft	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 = 12.5$ or $4 \times 0.5^4 \times 200 = 50$ or $6 \times 0.5^4 \times 200 = 75$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. If their CV are statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV then of supported (not binomial). If their Test statistic < their CV then must say supported (is binomial accorrect method for finding the total number of girls. At least 3 non zero terms correct. useful figures $[0] + 68 + 138 + 114 + 40$. Implied by 360 or 1.8	ded) ded) det heir test Allow in n must say				
(b)	M1 A1 B1 A1 B1 A1ft	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. ft their CV are statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial figures $[0] + 68 + 138 + 114 + 40$. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p	ded) ded) ded) nd their test Allow in n must say mial)				
	M1 A1 B1 A1 B1 A1ft	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 = 12.5$ or $4 \times 0.5^4 \times 200 = 50$ or $6 \times 0.5^4 \times 200 = 75$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. If their CV are statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV then of supported (not binomial). If their Test statistic < their CV then must say supported (is binomial accorrect method for finding the total number of girls. At least 3 non zero terms correct. useful figures $[0] + 68 + 138 + 114 + 40$. Implied by 360 or 1.8	ded) ded) ded) ond their test Allow in must say mial)				
(b)	M1 A1 B1 A1ft M1 A1* B1	Both hypotheses correct. Must mention B(4, 0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.84 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.84 10.84 Allow 10.84 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. ft their CV are statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic \times their CV the not supported (not binomial). If their Test statistic \times their CV then must say supported (is binomated) by the second of 1.86 condone inclusion of 1.86 condone implied by a correct critical value of 1.86 condone inclusion of 1.86 condone implied by a correct critical value of 1.86 condone inclusion of 1.86 condone implied by a correct critical value of 1.86 condone inclusion of 1.86 condone implied by a correct critical value of 1.86 condone inclusion of 1.86 condone implied by a correct critical value of 1.86 condone inclusion of 1.86 condone implied by a correct critical value of 1.86 condone inclusion of 1.86 condone impl	ded) ded) ded) ond their test Allow in must say mial)				
(b)	M1 A1 B1 A1ft M1 A1* B1 B1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 = 12.5$ or $4 \times 0.5^4 \times 200 = 50$ or $6 \times 0.5^4 \times 200 = 75$ May be implied by correct answer 10.84 or 10.84 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.84 10.84 Allow 10.86 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. If their CV at statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic $>$ their CV then of supported (not binomial). If their Test statistic $<$ their CV then must say supported (is binomial and correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures $[0] + 68 + 138 + 114 + 40$. Implied by 360 or 1.8 eso allow for $360/800$ or $1.8/4$ or $1.8 = 4p$ Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/B($v = 3$ This mark can be implied by a correct critical value of 7.815 Condone (their v in part(a) -7.815 ft their degrees of freedom if they have (their v in part(a) -7.815 ft their degrees of freedom if they have (their v in part(a) -7.815 ft their degrees of freedom if they have (their v in part(a) -7.815 ft their degrees of freedom if they have (their v in part(a) -7.815 ft their degrees of freedom if they have	ded) ded) ded) (0.45,4)				

Questio	on	Scheme	Marks			
5 (a)	, I	$\mathrm{H}_0:\mu_{\scriptscriptstyle A}=\mu_{\scriptscriptstyle B}$	B1			
3 (a)	1	$H_1: \mu_A > \mu_B$ oe	DI			
	S	$e = \sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}$	M1			
		·				
	z	$t = \pm \frac{1377 - 1368}{\sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}}$	2.61			
		$\frac{17.8^2}{1000} + \frac{18.4^2}{1000}$	M1			
		• • • • • • • • • • • • • • • • • • • •				
		$=\pm 2.339$ awrt ± 2.34	A1			
		One tailed c.v. $ Z = 2.3263$ or CR: $Z \le -2.3263$ or $Z \ge 2.3263$	B1			
		n CR/Significant/Reject H ₀	dM1			
		ufficient evidence to support that the mean <u>vield</u> from plants using fertiliser \underline{A} is reater than the mean <u>vield</u> from plants using fertiliser \underline{B}	A1ft			
			(7)			
ALT	_	Inding the CI can get B1M1M1A0B1M1A1 unless test statistic given				
	a	ward M1 for $z = \pm \frac{D}{\sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}}$ dep on first M1 where $2.3 \le z \le 2.4$				
		$\sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{10}}$				
		1 30 40				
(b)		May be implied by $ D = 8.949$ expected profit per plant				
	A	$\begin{array}{ccc} : 3 \times 1.377 - \frac{75}{50} & B: \ 3 \times 1.368 - \frac{50}{40} \\ : £2.63(1) & B: £2.85(4) \end{array}$	M1			
	A	: £2.63(1) B: £2.85(4)	A1			
	C	laire should use fertiliser B	dA1 (3)			
		Notes	Total 10			
(a)	B 1	Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ If A and B not μ	used the			
		letter must be defined For a correct attempt to find the se or se ² Condone slip in sample sizes May be implied by				
	M1	se = awrt 3.85 or se ² = awrt 14.8. Allow for a p -value of 0.0096 or awrt 0.0097				
	M1	For an attempt to find z value. Allow slip in sample sizes and/or use of 17.8 and 18. 4 rather than 18. 4^2 Allow for a p-value of 0.0096 or awrt 0.0097	han 17.8 ²			
	A1	awrt = ± 2.34 Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097				
	B1	± 2.3263 or better seen (Calculator gives 2.3263479) must be compatible with their test state	tistic			
	33.5	dep on previous dM1 awarded, ft their test statistic and CV only. A correct statement compat				
	dM1	their test statistic and CV only – need not be contextual but do not allow contradicting non co comments.	ntextual			
	A 1 &	ft their z value and CR only. A correct contextual statement compatible with their test statistic	and CV			
	A1ft	with context of yield (at least once) and A and B				
		NB id they give a <i>p</i> -value of awrt 0.0096/7 they could get B1M1dM1A1B0dM1A1				
		A correct method to find the profit per n plants or m kg for either fertiliser A or fertiliser B	,			
(b)	(b) $n(3\times1.377-75/50)$ or $n(3\times1.368-50/40)$ or $m(3-75/50\times1.377)$ or $m(3-50/40)$					
		where n and $m \neq 0$ Implied by one correct value for A or B				
		must have 2 values which can be compared. ie using same n or m . Profit per n plant £2.63(1)				
	A1	£2.85(4) n or profit per m kg awrt £1.91 m and awrt £2.09 m (2dp) or cost per m kg awrt £1.0 awrt £0.91 m or number plants per £ y awrt 0.38 y and awrt 0.35 y				
	Useful numbers ($n = 50$ gives profit 131.55, 142.7) or ($n = 40$ gives profits 105.24 and 114					
——	Useful numbers ($n = 50$ gives profit 131.55, 142.7) or ($n = 40$ gives profits 105.24 and 114.16) dA1 dependent on 1 st A1 being awarded. For a correct statement.					
	aAI	dependent on 1 111 being awarded. For a correct statement.	1			

Question		Scheme	Marks						
6 (a)	$\left[\overline{x} = \frac{8}{3}\right]$	$\frac{06.4}{36} = $ $ 22.4$	B1						
	"22.4"	$\pm 2.3263 \times \frac{0.4}{\sqrt{36}}$							
		24, 22.55) awrt (22.2, 22.6)							
	NB ans	wers which are awrt (22.2, 22.6) gain full marks							
(b)	[The C distrib	Central Limit Theorem is not required as] the original population is normally (4) B1							
	22.5 :	.4. 4 6.1 .4 1	(1)						
(c)		within the confidence interval reason to doubt the manufacturers claim	B1 ft dB1 ft						
	50 110 1	cason to doubt the manufacturers claim	(2)						
(d)	$\overline{Y} \sim N$	$\left(850, \left(\frac{5}{\sqrt{10}}\right)^2\right)$	B1						
	$P(\bar{Y} < 848) = P\left(Z < \frac{848 - 850}{\frac{5}{\sqrt{10}}}\right) = [P(Z < -1.26)]$								
		= 0.1038 (Calculator gives 0.10295) awrt $0.103 / 0.104$	A1						
A T /TD	11/0500	250)	(3)						
ALT	$N(8500)$ $P(\overline{Y} <$	$(848) = P\left(Z < \frac{8480 - 8500}{\sqrt{250}}\right) = [P(Z < -1.26)]$	M1						
		= 0.1038	A1						
		Notes	Total 10						
(a)	B1	For 22.4							
	M1	For use of $\overline{x} \pm z$ value $\times \frac{\sigma}{\sqrt{n}}$ with $1.2 < z < 2.6$							
	B1	For z value = 2.3263 or better seen (Calculator gives 2.3263479)							
	A1	awrt (22.2, 22.6) This does not imply the B1							
(b)	B1	For reference to the data is modelled by normal distribution							
(c)	B1 ft	ft their CI For a comment on whether 22.5 (or it) is or is not in their CI allow eg range for CI Allow "22.24" < 22.5 < " 22.6" Answer must be compatible with their CI							
	dB1 ft	Dependent on B1 ft. For a correct comment ft their CI eg claim is correct oe							
(d)	B1	for $\overline{Y} \sim N(850,)$ or $\overline{Y} < \frac{848 - 850}{5}$ Must have \overline{Y} or $N\left(850, \left(\frac{5}{\sqrt{10}}\right)^2\right)$ or $N(850, 2.5)$ seen or used or $N(8500, 250)$ seen or used. Both implied by a correct standardisation.							
	M1	M1 For ± (a correct standardisation) implied by a correct answer							
		/ 1 J	A1 awrt 0.103 to 0.104						

Question	Scheme	Marks					
7 (a)	Let $P = \text{time to serve a customer at a standard checkout}$						
	$Q = P_1 + P_2 + P_3$ $[Q \sim] N(720, 1200)$	B1					
	$P(Q < 660) = P\left(Z < \pm \frac{660 - "720"}{"\sqrt{1200"}}\right) [= P(Z < -1.732)]$ $= 0.0418 \qquad \text{(Calculator gives } 0.04163) \qquad \underline{\text{awrt } 0.041 / 0.042}$						
A T 75	for the D1 M1						
ALT	for the B1 M1						
	B1 for $[Q \sim] N\left(12, \frac{1}{3}\right)$						
	M1 for $P(Q < 11) = P\left(Z < \pm \frac{11 - "12"}{\sqrt{"\frac{1}{3}"}}\right) [= P(Z < -1.732)]$						
(b)	Assume the time taken to serve customers is independent	B1					
(a)	D = time to conve a system on at an ayungag all all and	(1)					
(c)	R = time to serve a customer at an express checkout $S = (P_1 + P_2 + P_3) - (R_1 + + R_7)$ $[S \sim] N(20,1648)$	M1 A1					
		WITAI					
	$P(S > 0) = P(Z > \pm \frac{0 - 20}{\sqrt{1648}}) [= P(Z > -0.492)]$						
	`	wrt 0.688 / 0.689 A1					
ALT	For the M1A1M1						
	M1 for $N\left(\frac{1}{3},\right)$						
	A1 for N $\left(\frac{1}{3}, \frac{103}{225}\right)$						
	M1 for $\pm \frac{0 - \frac{1}{3}}{\sqrt[8]{103/225}}$						
	V , 223	(4)					
	Notes	Total 8					
(a)	B1 For N(720,1200) or N $\left(12,\frac{1}{3}\right)$ Maybe awarded if used in stand	ardisation					
	M1 For standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and their standardising using 660, their mean ≠ 240 or 4 and	For standardising using 660, their mean \neq 240 or 4 and their standard deviation \neq 20 or $\frac{1}{3}$. If no					
	distribution given the mean and sd must be correct in the standardis	sation. Allow ± stand					
(1)		awrt 0.041 or awrt 0.042					
(b)	B1 A correct assumption. Must have context of customers or time and						
(c)	M1 For N(± 20 ,) or N $\left(\frac{1}{3}$,) maybe awarded in standardisation						
	` ´ ´	M1 For N(±20,) or N $\left(\frac{1}{3},\right)$ maybe awarded in standardisation A1 For N(±20, 1648) or N $\left(\frac{1}{3},\frac{103}{225}\right)$ maybe awarded if used in standardisation					
	For standardising using 0 and mean of ± 20 or $\pm 1/3$ and their standard deviation. The 0 may be						
	implied by having just the mean on the numerator Allow ± stand A1 awrt 0.688 to 0.689						
	1 1						